

ANL/ALCF-19/3

A Study of Geodesic Distance Kernel on an

Integrated GPU

Argonne Leadership Computing Facility

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at

9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free via DOE’s SciTech Connect

(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne

National Laboratory, or UChicago Argonne, LLC.

mailto:orders@ntis.gov
http://www.osti.gov/scitech/)
http://www.anl.gov/
http://www.ntis.gov/
http://www.osti.gov/
mailto:reports@osti.gov

ANL/ALCF-19/3

A Study of Geodesic Distance Kernel on an Integrated GPU

prepared by Zheming Jin

Argonne Leadership Computing Facility, Argonne National Laboratory

November 25, 2019

A Study of Geodesic Distance Kernel on an Integrated GPU

I. INTRODUCTION

Graphics processing units (GPUs) are commonly used
for graphics and general-purpose (GPGPU) computation.
Currently, NVIDIA’s GPUs, through its CUDA framework
for GPGPU programming, are ubiquitous for high-
performance computing. Another class of GPUs, with a
central processing unit (CPU) and a GPU integrated on the
same chip, is commonly used in laptops, desktop computers,
and low-power servers. While they are not designed to
outperform discrete GPUs due to the power, area, and
thermal constrains [1], there is a need to better understand
the performance of a processor with an integrated GPU for
floating-point intensive applications. The study helps us
better understand the characteristics of hardware and
software development tools, and the benefit of offloading
such applications to an integrated GPU.

Toward that end, we choose a floating-point intensive
kernel, port the kernel with a vendor-neutral framework, and
evaluate the optimizations of the kernel on a server with a
CPU and a GPU integrated on a chip. Specifically, we focus
on the geodesic distance kernel. It has both arithmetic and
trigonometric functions, and is widely used in geographical
information system (GIS) for computing the distance
between two locations on the earth. We develop and
optimize the kernel written in Open Computing Language
(OpenCL), an open standard for writing portable programs
on CPUs, GPUs, and other types of hardware accelerators
[2]. We show the impact of compiler’s optimization options
on kernel performance on an Intel® Iris™ GPU. We also
compare the performance and energy consumption of the
OpenCL applications executing on the processor. We
summarize our key findings as follows:
 • When fast relaxed math is enabled for building the
single-precision floating-point intensive kernel, the compiler
can take advantage of the transcendental functions
implemented on the GPU. However, such functions are not
available for double-precision operations. Compared to the
baseline in which optimizations are disabled, the floating-
point optimizations improve the performance of the single-
and double-precision floating-point kernels by 9.4X and
4.8X on an Intel® GEN9 integrated GPU, respectively.
 • Using a floating-point multiply-and-add OpenCL kernel
to characterize the floating-point performance with respect to
arithmetic intensity, we determine the arithmetic intensity
required to achieve peak floating-point performance.

The report is structured as follows. Section II summarizes
the compute architecture of an Intel® integrated GPU.
Section III presents the optimized OpenCL kernel in details
and the analysis of the compiler optimizations of the kernel.
In Section IV, we show the experimental results on the GPU.
Section V summarizes related studies, and Section VI
concludes the report.

II. BACKGROUND

While mainstream integrated GPUs are produced by
ARM, Intel®, and NVIDIA, the report is focused on the
architecture of an Intel® integrated GPU. This kind of GPU
connects to CPU cores via a ring interconnect, and they share
main memory with CPU cores. To reduce data access latency
from main memory, an integrated GPU maintains a memory
hierarchy comprised of register files, instruction and data
caches. Some products include an embedded DRAM
(eDRAM) behind last-level cache to further reduce latency
to system memory for higher effective bandwidth. The
building block of the graphics compute architecture is the
execution unit (EU). It is a combination of simultaneous
multi-threading and fine-grained interleaved multi-threading.
Each EU can run seven threads concurrently to hide memory
access latency. Each thread has 128 SIMD-8 32-bit registers.
Each EU can co-issue to four instruction processing units
(IPUs) including two floating-point units (FPUs), a branch
unit for branch instructions, and a message unit for memory
operations, sampler operations, and other longer-latency
system communications. Each FPU supports both floating-
point and integer operations, and can execute up to four 32-
bit floating-point or integer operations. However, only one
FPU provides support for transcendental math functions and
double-precision floating-point operations.

From the perspective of an OpenCL kernel, multiple
kernel instances, which are equivalent to OpenCL work-
items, are executed simultaneously within a hardware thread.
For a SIMD-16 compile of a kernel, 112 kernel instances can
be executing concurrently on an EU. If there is a divergent
branch in one or more kernel instances, an EU’s branch unit
keeps track of such divergence and generates masks to
control which instances need to execute the branch.

Arrays of EUs are organized as a subslice. The number of
EUs per subslice depend on the generation of compute
architecture. Each subslice contains a thread dispatcher unit
and supporting instruction caches. In addition, it includes a
sampler unit for sampling texture and image surfaces, and a
data port memory management unit for a variety of general-
purpose buffer accesses, scatter/gather operations, as well as
shared memory accesses. Subslices are grouped into slices.
In general, a slice has three subslices, but the number of
slices depend on products and their generations. A slice
integrates additional logics for thread dispatch routing,
banked L3 data cache, banked shared memory, and fixed
function logic for atomics and barriers.

III. KERNEL IMPLEMENTATION

A. Geodesic Distance Kernel in OpenCL

The geodesic distance kernel calculates the distance
between two geographic coordinates on the earth’s surface.

Earth’s shape is modelled as an ellipsoid. The shortest
distance between two points along the surface of an ellipsoid
is along the geodesic. The methods for computing the
geodesic distance are available in GIS, software libraries,
standalone utilities, and online tools [3]. The OpenCL kernel
is based on the open-source implementation [4] of the
solution to the inverse geodesic problem [5].

In the Appendix, we show the N-Dimensional Range
kernel in OpenCL-style pseudocode. “FP” and “FP4”
represent a generic floating-point data type and its vector
data type, respectively. The OpenCL vector type can pack a
pair of coordinates into a vector, each of which is
represented as latitude and longitude in degree. While
distance calculation using double precision is preferred for
accuracy, we extend it to include single precision in our
study. The kernel arguments “total” and “offset” are needed
for data streaming on a discrete GPU. When a GPU and a
CPU are integrated, streaming is not needed to overlap
communication and computation. Hence, they are equal to
the global work size and zero, respectively. The kernel can
be logically divided into three building blocks. The second
block (lines 26 to 43) implements an iterative method to
compute the geographical distance between two given
points. The kernel is floating-point intensive with more than
100 arithmetic and trigonometric floating-point operations.

B. Analysis of Floating-point Optimizations

When building an OpenCL kernel, we can enable the
OpenCL-specific optimization options to make the compiler
attempt to improve the performance and reduce code size of
a kernel. In this study, we focus on three optimization
options for building an OpenCL kernel [6]: disable all
optimizations (no-opt), default (default), and fast relaxed
math (opt). We want to have a better understanding of the

impact of each option on the code size and the number of
floating-point arithmetic instructions at the assembly level.

We use a command-line utility (“ioc64”) in Intel® SDK
for OpenCL to generate an assembly file from an OpenCL
kernel. The utility allows a user to specify build options for a
kernel. While generating an assembly file, the utility prints a
summary of device information and memory usage of a
kernel. The utility can also build an OpenCL kernel offline
as opposed to at runtime.

Tables I lists the impact of the build options upon the
number of floating-point instructions for the single- and
double-precision floating-point geodesic distance kernels
targeting an integrated GPU. LOC counts the number of
lines (including labels) in the assembly file generated from
the OpenCL kernel. Compared to the kernel with the
optimizations disabled or with the default option, relaxing
the single-precision floating-point operations can reduce the
LOC by approximately 10X and more. We attribute the
significant reduction in code size to the instantiation of three
trigonometric functions for the sine and cosine operators in
the kernel. These extended math functions take advantage of
the extended math capability provided by the underlying
FPU. In addition, all divide instructions (div) are replaced
with the inverse instructions (inv) to reduce the overhead of
floating-point divide.

On the other hand, relaxing the double-precision floating-
point operations can reduce the LOC by at most 1.6X. The
result suggests that there are no special processing units for
double-precision floating-point trigonometric functions in an
FPU. For both precisions, the divide instructions are replaced
with the inverse instructions to reduce the overhead of
floating-point divide. In addition, the compiler is able to use
the built-in “mad” and “rsqrt” functions for efficient
computations. Overall, the compiler is better at optimizing a

TABLE I. IMPACT OF THE OPTIMIZATIONS OF THE GEODESIC DISTANCE KERNEL ON THE NUMBER OF INSTRUCTIONS IN THE ASSEMBLY

Name Note Float32

no-opt.

Float32

default

Float32

opt.

Float64

no-opt.

Float64

default

Float64

opt.

LOC Lines of code 2144 1657 145 5969 4519 3837

mul Multiplication 218 220 41 530 484 486

add Addition 381 258 15 1275 859 474

mad Multiply-and-add 196 201 26 963 908 679

div Division 11 8 0 0 0 0

inv Inverse 2 2 8 32 26 22

sqrt Square root 2 2 2 0 0 0

rsqrt Reverse square root 2 2 3 8 8 8

sin Sine 0 0 3 0 0 0

cos Cosine 0 0 3 0 0 0

cmp Compare 108 89 3 89 86 79

sel Select 186 194 4 34 26 35

mov Move 311 160 24 1480 957 917

shl Shift left 89 86 2 235 124 124

shr Shift right 138 96 0 138 132 132

or Logical OR 121 120 1 132 125 125

and Logical AND 73 68 0 237 203 191

single-precision kernel than a double-precision kernel.

IV. EXPERIMENT

A. Setup

In our experiment, the server has an Intel® Xeon® E5-
1585 v5 CPU running at 3.5 GHz. The CPU has four cores
and each core has two threads. The theoretical memory
bandwidth is 34.1 GB/s. The integrated GPU is Skylake
GT3e, Generation 9.0. The specifications for the GPU are
summarized in Tables II. The official thermal power draw of
the GPU is not available. For the GPU compute runtime [7],
the device version is OpenCL 2.1 NEO and the driver
version 19.43.14583. The maximum work-group size (local
size) is 256. Empirical results show that the runtime can
select an appropriate work-group size; therefore we have the
OpenCL implementation determine how to break the global
work-items into appropriate work-group instances. We use
Red Hat Enterprise Linux 7 (version 7.6) and the kernel is
5.3.1. We build the OpenCL application with the g++
compiler, version 4.8.5.

To minimize data transfers between the integrated GPU
and the CPU, we make use of the zero-copy buffers which
can reduce the communication cost and energy consumption.
We measure the total elapsed time of executing an OpenCL
application on a target device. This includes the initialization
of OpenCL runtime, offloading the kernel to the GPU, and
reading back the GPU results. We use “ioc64” to build the
OpenCL kernel offline as opposed to at runtime, and choose
the minimum execution time of 32 runs.

 The input coordinates are retrieved from Maxmind’s
world cities database that includes city, region, country,
latitude, and longitude. In our experiment, we extract 221
cities with unique locations around the world, and choose six
cities in five continents (Bombay, Melbourne, Waltham,
Moscow, Glasgow, and Morocco) from which the kernel
computes distances to each of 221 cities.

B. Performance Characterization

Two key attributes of computer graphics computation are

data parallelism and independence, which can be combined
in a single concept known as arithmetic intensity [8]. In this
study, we choose a floating-point multiply-and-add kernel as
shown in Listing 1 to evaluate the number of floating-point
operations performed by the kernel relative to the amount of
memory accesses that are required to support those
operations. It should be pointed out that we use this kernel to
estimate the performance of the floating-point operations
with respect to the arithmetic intensity on the GPU. Our
focus is not the maximum floating-point performance that
can be achieved on the GPU. The global work size is 227, and
the work-group size is set by the OpenCL runtime. Each
work-item iterates over a “for” loop to accumulate the sum
of the product of the content of the array element at index “i”
and the value of the loop index. The parameters “TYPE” and
“N” in the OpenCL kernel are set at compile time. From the
OpenCL kernel perspective, there are two single-precision
floating-point operations for each work-item when “N”
equals one and “TYPE” is “float”.

Figures 1 and 2 show the giga floating-point operations
per second (GFLOPS) with respect to arithmetic intensity for
the single- and double-precision floating-point multiply-and-

Fig 1. Giga floating-point operations per second (GFLOPS) with

respect to arithmetic intensity for the single-precision (float32)

floating-point multiply-and-add kernel

TABLE II. THE GPU INFORMATION

Parameter Iris™ Pro Graphics P580

Technology 14 nm

Base Freq. 0.35 GHz

Max Dynamic Freq. 1.15 GHz

Embedded DRAM 128 MB

Slices/Subslices 3/9

Execution Units 72

Max Memory Size 64 GB

Thermal Power Draw N/A

1 kernel void multiply_add (

2 global const TYPE *restrict a,

3 global TYPE *restrict c)

4 {

5 int i = get_global_id(0);

6 TYPE sum = 0;

7 for (int j = 0; j < N; j++)

8 {

9 sum += a[i] * j;

10 }

11 c[i] = sum;

12 }

Listing 1. The OpenCL reduction kernel with the parameters

“TYPE” and “N” set at compile time

add kernel on the GPU, respectively. The GFLOPS levels off
at approximately 1000 and 150 for the single- and double-
precision kernels, respectively. The “peak” single-precision
GFLOPS is more than five times higher than the “peak”
double-precision GFLOPS when the arithmetic intensity is
above 150. The performance trends show that achieving the
“peak” GFLOPS on the GPU requires a minimum arithmetic
intensity of 50.

C. Performance Comparison

The relationship between the GFLOPS and arithmetic
intensity indicates that it is beneficial to offload a floating-
point intensive kernel to the GPU. Ultimately, we need to
know the raw performance of the kernel implementations.

Table III shows the elapsed time in millisecond (ms) on
the GPU with respect to the three optimization options, and
the performance speedup in terms of execution time
(SpeedupT) and precision (SpeedupP). The single-precision
kernel is only about 2.6X faster than the double-precision
kernel when all optimizations are disabled. However, the
single-precision floating-point optimizations can achieve 5X
speedup over the optimized double-precision floating-point
operations. On the other hand, the floating-point
optimizations reduce the baseline execution time by 9.4X
and 4.8X for the single- and double-precision kernels,
respectively. The performance improvement shows that it is
important to apply the floating-point optimizations whenever
possible. The comparison also suggests that more double-
precision floating-point optimizations at the hardware level

are needed for high-performance computing applications
which require double-precision floating-point operations for
accuracy and stability.

We look at GPU kernel execution per code line with the
GPU In-kernel Profiling in Intel® VTune™ Amplifier [9].
The profiling tool can estimate the GFLOPS of a kernel via
GT-Pin [10]. When the floating-point optimizations are
enabled, the reported GFLOPS is 422 and 79 for the single-
and double-precision floating-point kernels, respectively.
Based on the specification in Table II, the theoretical
maximum GFLOPS of the GPU is 1324.8 for single
precision and 331.2 for double precision. Hence, the kernel
can achieve 32% and 24% of the theoretical single- and
double-precision floating-point performance, respectively.
Compared to the “peak” performance measured using the
multiply-and-add kernel, the kernel can achieve 43% and
53% of the “peak” single- and double-precision GFLOPS,
respectively. We attribute low performance efficiency to the
overhead of executing complex trigonometric functions in an
iterative loop.

D. Energy Comsumption

We measure the energy consumption of running the
OpenCL applications using Linux’s “perf” interface [11].
Figure 3 shows the energy in Joules of the event types
“cores”, “gpu”, “pkg”, and “ram” when running the OpenCL
application in single- and double-precisions on the processor.
For a compute-bound application, we expect that the DRAM
energy consumption is the lowest. Using the floating-point
optimizations reduce the package energy by 3.9X and 2.8X
for the single- and double-precisions, respectively. On the
other hand, the double-precision floating-point operations
consume about 3.1X, 5.5X, 3.6X, and 2.8X more energy
than that of the single-precision floating-point operations for
the four energy events, respectively.

V. RELATED WORK

In [1], the authors presented the architectures of Skylake®
and Kabylake® integrated GPUs, and characterized the
performance of the two GPUs through a collection of micro-
benchmarks. Although it is the first work that takes a

TABLE III. MINIMUM EXECUTION TIME (MILLISECOND) OF 32 RUNS ON

THE GPU. THE GLOBAL WORK SIZE IS 221.

Precision Time

No-opt.

Time

Default

Time

Opt.

SpeedupT

Float32 113 38 12 9.4

Float64 290 184 60 4.8

SpeedupP 2.6 4.8 5

Fig 2. Giga floating-point operations per second (GFLOPS) with

respect to arithmetic intensity for the double-precision (float64)

floating-point multiply-and-add kernel

Fig. 3. The energy consumption (cores, GPU, package, DRAM)

of running the OpenCL application with the un-optimized,

default, and optimized kernels executing on the GPU.

detailed look at Intel® integrated GPU architectures, the
paper does not provide the insight of floating-point
performance with respect to arithmetic intensity. Compared
to the extensive studies on NVIDIA’s discrete GPUs, there
are limited studies on Intel’s integrated GPUs [12, 13, 14,
15 , 16] due to the limitations in performance and
programming framework. Compared to the previous work,
we add the analysis of compiler optimizations, the
characterization of floating-point performance, and the
performance evaluation of the single- and double-precision
floating-point implementations on the GPU.

VI. CONCLUSION

We use the geodesic distance kernel in OpenCL as a case
study to better understand the performance of a floating-
point intensive kernel on a processor with a CPU and a GPU
integrated on the same chip. Although an integrated GPU is
not designed to outperform a discrete GPU, our experimental
results show that the floating-point optimizations can
improve the raw performance of the single- and double-
precision floating-point kernels by 9.4X and 4.8X on the
GPU. In the meantime, it can reduce the package energy by
2.8X for the single precision, and 3.9X for the double
precision. The GFLOPS with respect to arithmetic intensity
shows that the arithmetic intensity plays an important role in
improving the number of floating-point operations per
second. Because of the hardware architecture of an FPU, the
compiler can generate efficient instructions for the single-
precision transcendental functions in the kernel whereas
there are no special function units for the double-precision
floating operations. We expect that technological advances
will improve the performance of double-precision floating-
point operations from the hardware level.

ACKNOWLEDGMENT

This research used resources of the Argonne Leadership

Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] Gera, P., Kim, H., Kim, H., Hong, S., George, V. and Luk, C.K.C.,
2018, April. Performance Characterisation and Simulation of Intel's
Integrated GPU Architecture. In 2018 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS) (pp.
139-148). IEEE.

[2] Stone, J.E., Gohara, D. and Shi, G., 2010. OpenCL: A parallel
programming standard for heterogeneous computing systems.
Computing in science & engineering, 12(3), p.66.

[3] Wikipedia webpage,
https://en.wikipedia.org/wiki/Geographical_distance

[4] GpsDrive Homepage, http://www.gpsdrive.de/

[5] Geographiclib Homepage, https://geographiclib.sourceforge.io/2009-
03/geodesic.html

[6] https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/cl
BuildProgram.html

[7] https://github.com/intel/compute-runtime

[8] Harris, M., 2005, July. Mapping computational concepts to GPUs. In
ACM SIGGRAPH 2005 Courses (p. 50). ACM

[9] https://software.intel.com/en-us/vtune-amplifier-help-gpu-in-kernel-
profiling

[10] Kambadur, M., Hong, S., Cabral, J., Patil, H., Luk, C.K., Sajid, S. and
Kim, M.A., 2015, October. Fast computational gpu design with gt-
pin. In 2015 IEEE International Symposium on Workload
Characterization (pp. 76-86). IEEE.

[11] Jim Jeffers et al.: Intel Xeon Phi Processor High Performance
Programming: Knights Landing Edition, Morgan Kaufmann
Publishers (2016)

[12] Lupescu, G., Slusanschi, E.I. and Tapus, N., 2016, September.
Analysis of OpenCL work-group reduce for Intel GPUs. In 2016 18th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC)(pp. 417-423). IEEE.

[13] Arvid, J., 2017. Analysis of GPU accelerated OpenCL applications on
the Intel HD 4600 GPU.

[14] Tseng, J., Wang, R., Tsai, J., Edupuganti, S., Min, A.W., Woo, S.,
Junkins, S. and Tai, T.Y.C., 2016, June. Exploiting integrated GPUs
for network packet processing workloads. In 2016 IEEE NetSoft
Conference and Workshops (NetSoft) (pp. 161-165). IEEE.

[15] Carroll, M.R., 2018, May. Improving Performance of OpenCL
Workloads on Intel Processors with Profiling Tools. In IWOCL(pp.
6-1).

[16] https://software.intel.com/en-us/blogs/2016/10/05/micro49-tutorial-
on-intel-processor-graphics-microarchitecture-and-isa

APPENDIX GEODESIC DISTANCE KERNEL IN OPENCL

1 kernel void

2 gd (global FP4 *restrict coordinate,

3 global FP *restrict distance,

4 const uint total,

5 const uint offset)

6 {

7 i = get_global_id(0) + offset ;

8 if (i >= total) return ;

9 lat1 = coordinate[i].s0 ;

10 lon1 = coordinate[i].s1 ;

11 lat2 = coordinate[i].s2 ;

12 lon2 = coordinate[i].s3 ;

 13 rad_lon1 = lon1[i] * TO_RADIAN ;

 14 rad_lat1 = lat1[i] * TO_RADIAN ;

 15 rad_lon2 = lon2[i] * TO_RADIAN ;

 16 rad_lat2 = lat2[i] * TO_RADIAN ;

17 tu1 = COMPRESSION_FACTOR * sin (rad_lat1) / cos (rad_lat1) ;

18 tu2 = COMPRESSION_FACTOR * sin (rad_lat2) / cos (rad_lat2) ;

 19 cu1 = 1.0 / sqrt (tu1 * tu1 + 1.0) ;

 20 su1 = cu1 * tu1 ;

 21 cu2 = 1.0 / sqrt (tu2 * tu2 + 1.0) ;

 22 s = cu1 * cu2 ;

 23 baz = s * tu2 ;

 24 faz = baz * tu1 ;

 25 x = rad_lon2 - rad_lon1 ;

26 do {

27 sx = sin (x) ;

28 cx = cos (x) ;

29 tu1 = cu2 * sx ;

30 tu2 = baz - su1 * cu2 * cx ;

31 sy = sqrt (tu1 * tu1 + tu2 * tu2) ;

32 cy = s * cx + faz ;

33 y = atan2 (sy, cy) ;

34 sa = s * sx / sy ;

35 c2a = - sa * sa + 1.0;

36 cz = faz + faz ;

37 if (c2a > 0.0) cz = -cz / c2a + cy ;

38 e = cz * cz * 2.0 - 1.0 ;

39 c = ((-3.0 * c2a + 4.0) * FLATTENING + 4.0) * c2a * FLATTENING / 16.0 ;

40 d = x ;

41 x = ((e * cy * c + cz) * sy * c + y) * sa ;

42 x = (1.0 - c) * x * FLATTENING + rad_lon2 - rad_lon1 ;

43 } while (fabs (d - x) > EPS) ;

44 x = sqrt(ELLIPSOIDAL * c2a + 1.0) + 1.0 ;

45 x = (x - 2.0) / x ;

46 c = 1.0 - x ;

47 c = (x * x / 4.0 + 1.0) / c ;

48 d = (0.375 * x * x - 1.0) * x ;

49 x = e * cy ;

50 s = 1.0 - e - e ;

51 s = ((((sy * sy * 4.0 - 3.0) * s * cz * d / 6.0 - x) *

 d / 4.0 + cz) * sy * d + y) * c * POLAR_RADIUS ;

52 distance[i] = s ;

53 }

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

